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Lecture Objectives

+ By the end of this lecture, you should understand:
o The use of arithmetic and logic operations in Verilog
* The danger of incomplete specification
* How to specify clocked circuits
* How to specify asynchronous and synchronous set/reset in flip-flops
« Differences between blocking and nonblocking assignments
e The use of testbenches
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In this lecture, we will go beyond the basic Verilog syntax and examine how flipflops
and other clocked circuits are specified.

I will also introduce the idea of a “testbench” as part of a design specification.




Power of Verilog: Integer Arithmetic

+ Arithmetic operations make computation easy:

module add32(a, b, sum);
input [31:0] a,b;
output [31:0] sum;
assign sum = a + b;
endmodule

¢ Here is a 32-bit adder with carry-in and carry-out:

module add32 carry(a, b, cin, sum, cout);
input[31:0] a,b;
input cin;
output [31:0] sum;
output cout;
assign {cout, sum} = a + b + cin;
endmodule
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Verilog is very much like C. However, the declaration of a, b and sum in the module
add32 specifies the data width (i.e. number of bits in each signal a, b or sum). This
is often known as a “vector” or a “bus”. Here the data width is 32-bit, and it is
ranging from bit 31 down to bit O (e.g. sum[31:0]).

You can refer to individual bits using the index value. For example, the least-
significant bit (LSB) of sum is sum[0] and the most-significant bit (MSB) is sum[31].
sum([7:0] refers the the least-significant byte of sum.

The ‘+’ operator can be used for signals of any width. Here a 32-bit add operation is
specified. sum is also 32-bit in width. However, if a and b are 32-bit wide, the sum
result could be 33-bit (including the carry out). Therefore this operation could result
in a wrong answer due to overflow into the carry bit. The 33th bit is truncated.

The second example module add32_carry shows the same adder but with carry
input and carry output. Note the LHS of the assign statement. The {cout, sum} is a
concatenation operator — the contents inside the brackets { } are concatenated
together, with cout is assigned the MSB of the 33th bit of the result, and the
remaining bits are formed by sum[31:0].

Different types of Boolean Operators

+ Bitwise operators: perform bit-sliced operations on vectors bit by bit
O ~(4’b0101) = {~0,~1,~0,~1} = 4’b1010
04’b0101 & 4’b0011 = 4’b0001
¢ Logical operators: return true or false (1-bit) results
O 1(4’b0101) =~1=1b0
¢ Reduction operators: act on each bit of a SINGLE input vector
O &(4’b0101)=0&1&0&1=1b0

Bitwise Logical Reduction
~a | NOT la | NOT &a AND
a&b | AND a&&b | AND ~& NAND
alb OR allb | OR | OR
a*b | XOR ~| NOR
a~"b | XNOR Note distinction between ~a and !a A XOR
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There are three different types of Boolean operators:

Bitwise operators perform what you would expect as if there are parallel gates used
for each bit of the operands. Therefore a&b means that each bit fromaand b is
passed through an AND-gate.

Logical operators only result in 0 or 1 (i.e. 1-bit result) In this example !a (not a)
where a = 0101, will result in first, a being evaluated as a logical value (i.e. logical ‘1’
or true). Therefore the result ~a is logical O (or false).

Reduction operators is applied to a single operand (and sometimes known as unary
operators). It performs the operation one-bit at a time to the operand.




Beware of Incomplete Specification

Intention A What you may write, but wrﬂ

module maybe mux 3tol(a, b, c,
sel, out);

input [1:0] sel;

a =00 input a,b,c;
b - i output out;
reg out;
c 10
A always @(a or b or c or sel)
e begin
case (sel)
2'b00: out = a;
3-to-1 MUX 2'b01: out = b;
(‘11" input is a don't-care) 2'b10: out = c:
. - ’
endcase
end
endmodule
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Assume that we want to specify a 3-to-1 multiplexer as shown on the left. On the
right is an attempt to specify this using the always + case construct in Verilog.

The case variable ‘sel’ is 2-bit wide, and therefore has 4 possibilities. The case
statement only specifies three of the four possible cases.

This is known as an “incomplete specification”.

In Verilog, there is this rule:

If something is not completely specified, the output must retain its previous value
when the unspecified condition occurs.

Incomplete specification:
adds unwanted latch circuit

if out is not assigned n . T

during any pass through Synthesiz6diCEg. ‘

the always block, then the
previous value must be

retained! a —oo
b 1 D Q= out
module maybe mux 3tol(a, b, c, 0 Y
sel, out); ¢ 10 G
input [1:0] sel;
input a,b,c; 2
output out; sel
reg out;
sel(1]
always @(a or b or ¢ or sel) sel[0]
begin
case (sel)
';’::gm out = :7 ¢ When sel = 2'b11, G = 0, therefore the
= ,m:f ::: . latch stores the previous output value as
endcase : required by Verilog in this situation.
end
endmodule
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The consequence of this is an unexpected extra latch being added to the hardware.

In order to cope with the unspecified condition of sel = 2’b11, the output of the
MUX is fed to be latch.

Noted that a latch is level-triggered; a flipflop is edge-triggered. A latch has the
property that when the gate input G is high, Q=D (i.e. it is transparent: input goes
straight to output). If G is low, the latch become opaque, meaning that it retains the
previous value.

The green shaded latch in the diagram and the controlling NAND gate are the
unintended consequences of this incompletely specified 3-to-1 multiplexer.




Always avoid incomplete specification

¢ Solution 1: Precede all conditionals + Solution 2: Fully specify all branches of
with a default assignment for all if-else construct, or include a default
signals: statement in case construct:
always @(a or b or c¢ or sel) always @(a or b or ¢ or sel)
begin begin
out = 1’'bx; case (sel)
case (sel) 2'b00: out = a;
2'b00: out = a; 2'b01: out = b;
2'b01: out = b; 2'bl0: out = c¢;
2'bl0: out = c; default: out = 1’'bx;
endcase endcase
end end
endmodule endmodule
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How to specify a sequential circuit?

+ Edge-triggered flipflop is specified with:

Combinational cct

module combinational(a, b, sel,
out) ;
input a, b;
input sel;
output out;
reg out;

always @ (a or b or sel)
begin

if (sel) out = a;

else out = b;

always @ (posedge clk):

I Sequential cct |
module sequential(a, b, sel,
clk, out);

input a, b;

input sel, clk;

output out;

reg out;

always @ (posedge clk)

begin

if (sel) out <= a;
else out <= b;

end
end
endmodule
endmodule a
out D Qf— out
b b
r>
sel sel clk
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There are two solutions to avoid the unintended latch being added.

Solution 1 is to put outside the case statement a “default” value for out. Here 1’bx
(i.e. ’x’) means undefined.

Solution 2 is better: inside the case statement block, always add the default line.

This will catch ALL the unspecified cases and avoid the introduction of the spurious
unintended latches.

Lesson: always include a default assignment in any case statement to capture
unintended incomplete specification.

We have previously seen the 2-to-1 MUX being specified as combinational circuit in
Verilog using the always construct with the sensitivity list.

The right hand diagram shows how a clocked sequential circuit is being specified
using always block, but with a sensitivity list that includes the keyword posedge (or
negedge). Note that the clocking signal clk is an arbitrary name — you could call it

“fred” or anything else!

The sensitivity list NO LONGER contains the input signals a, b or sel. Instead the
hardware is specified to be sensitive the positive edge of clk. When this happens,
the output changes according to the specification inside the always block.

Two assignments (“=“ and “<=") are shown here. | will explain the difference

between these later.




Synchronous clear in D-flipflop

¢ posedge and negedge makes an always block sequential and edge-triggered
+ Sensitivity list in a sequential always block determines what circuit is synthesized

| D flipflop with synchronous clear
module dff sync clear(d, clearb,

clock, q); dk
input d, clearb, clock;
output q; d

reg q; —\
always @ (posedge clock)

begin clearb

if (!clearb) q <= 1'b0;

else q <= d; _’_ﬁ
end q

endmodule

+ve edge on clock triggers action in
always block

¢ Beware of race condition if you have two or more always blocks — they execute in
parallel!

PYKC 15 Oct 2019

E2.1 Digital Electronics Lecture 4 Slide 9

Therefore in Verilog, you specify flipflops using always block in conjunction with the
keyword posedge or negedge.

Here is a specification for a D-flipflop with synchronous clear which is low active (i.e.
clear the FF when clearb is low).

You may have more than one always block in a module. But if this is the case,
beware that the two always blocks will execute in parallel. Therefore they must

NOT specify the same output, otherwise a race condition exists and the result is
unpredictable.

Asynchronous clear in D-flipflop

+ If one signal in the sensitivity list uses posedge or negedge, ALL signals must also
specify an edge. This syntax is wrong: always @ (clearb or posedge clock)

| D flipflop with asynchronous clear |

module dff async_clear(d, clearb, clock, q);

input d, clearb, clock; clk_’_\_‘_\_,_\_'_\
output q;

reg q; \

always @ (negedge clearb or posedge clock)
begin

eg
if (!lclearb) q <= 1'b0; clearb )

else q <= d;
end

endmodule q’_‘i

+ve edge on clock OR clearb trigger action in |

always block
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Here is a specification for asynchronous clear of the D-flipflop. Either positive edge
on clock or negative edge on clearb will cause the statements inside the always
block to take effect.

| must remind everyone that the code shown here is a specification. They are
synthesised into logic circuits — they are NOT executed as in a C programme.

10




Blocking vs Non-blocking Assignments

Verilog has two different types of assignments: blocking & nonblocking.

Blocking assignments = are executed in the order they appear, therefore they are done
one after another. Therefore the first statement “blocks” the second until it is done,
hence it is called blocking assignments.

always @ (a or b or c) :
b = a; x=a | b; 1. Evaluate a | b, assign result to x
// both a &« b = b vy=a”*b"*c; 2. Evaluate a*b”c, assign resultto y
z2 =b & ~C; 3. Evaluate b&(~c), assign result to z
end
+ Non-blocking assignments <= are executed in parallel. Therefore an earlier statement

does not block the later statement. Note the subtle effect this has within always block:

always @ (a or b or c)
a <= b; ENEIRN begin Non-blocking
b <= a; a | b; 1. Evaluate a | b but defer assignment of x
// swap a and b a’*b”c; 2. Evaluate a*b*c but defer assignment of y
b & ~c; 3. Evaluate b&(~c) but defer assignment of z
end
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Be careful to use the correct assignment

¢ Here are two versions of a 3-stage shift q1 q2

register consisting of 3 flipflops using in—D Q D Q D Q}-out

blocking and nonblocking assignments.
<+ Will they give the same results?

clk |_> |—> |—>

module blocking(in, clk, out);
input in, clk;

output out; module nonblocking(in, clk, out);
reg ql, g2, out; input in, clk;
always @ (posedge clk) output out;
begin reg ql, g2, out;
gl = in; always @ (posedge clk)
q2 = ql; begin
out = q2; ql <= in;
end q2 <= ql;
endmodule out <= q2;
end
endmodule
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In Verilog ‘=* is known as blocking assignment. They are executed in the order they
appear within the Verilog simulation environment. So the first ‘=’ assignment blocks
the second one. This is very much like what happens in C codes.

In the top left example, both a and b eventually have the value b.

In the top right example, each statement is evaluated in turn and assignment is
performed immediately at the end of the statement.

Non-block assignment is ‘<=‘, and statements with this assignments are executed in
parallel (i.e. order do not matter).

In the bottom left example, a and b are swapped over because you can view that
the two assignments happen at the same time.

In the bottom right example, three evaluations are made, and the assignment to x, y
and z happens at the same time on exiting from the always block.

11

Understanding the difference between ‘=’ and ‘<=’ is important. Suppose we want
to specify a three-stage shift register (i.e. three D-FF in series as shown in the
schematic).

Here are two possible specification. Which one do you think will create the correct
circuit and which one is wrong?

12




Use NONBLOCKING assignment for sequential logic

always @ (posedge clk)
begin

ql = in;

q2 = ql;

out = g2;
end

+ At each rising clock edge:
q1 =in,
then q2 =q1 =in,
then, out=q2=q1 =in.
¢ Therefore out = in, which is NOT the
intention.

always @ (posedge clk)
begin

ql <= in;

g2 <= ql;

out <= q2;
end

At each rising clock edge, q1, g2 and
out simultaneously receive the old
values of in, q1, g2 respectively.

. )6 q1 q2
n — l—e——e— Out
D>
clk 4|—

q1 q2

in—D Q D Q D Qf— out

clk I_> r> |—>
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The left hand specification is wrong. Since the three assignments are performed in
sequence, out = q2 = g1 = in. Therefore the resultant circuit is ONE D-flipflop.

The right hand side is correct. g1, q2 and out are updated simultaneously on exit
from the always block. Therefore their “original” values MUST be retained. Hence
this will result in three D-flipflops being synthesised (i.e. created).

In general, you should always use ‘<=’ inside an always block to specify your circuit.

13

A larger example — 32-bit ALU in Verilog

¢ Here is an 32-bit ALU with 5 simple instructions: 2-to-1 MUX
A[31:0] B[31:0] module mux32two(10,11,sel,out);
input [31:0] 10,11;

input sel;
output [31:0] out;

assign out = sel ? i1 : 10;

endmodule

- F[2:0]

3-to-1 MUX

module mux32three(10,11,12,sel,0ut);
input [31:0]) 10,11,12;

input [1:0] sel;
output [31:0] out;
reg ([31:0]) out;

} lways @ (10 or 11 or 12 or sel)
F2 F1FO0 | Function| alway
R[31:0] begin
case (sel)
000 A+B 2'b00: out = 10;
001 A+1 2/b01: out = 11;
010 A-B 2'b10: out = 12;
default: out = 32'bx;
011 A-1 endcase
1 0 X A*B end
endmodule
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Now let us put all you have learned together in specifying (or designing) a 32-bit ALU
in Verilog.

There are five operators in this ALU. We assume that there are three arithmetic
blocks, and three multiplexers (two 2-to-1 MUX and one 3-to-1 MUX).

14




The arithmetic modules

¢ Here is an 32-bit ALU with 5 simple instructions: module mullé (10,11, prod);

A[31:0] B[31:0] input [15:0] 10,11;
output ([31:0] prod;

| // this is a magnitude multiplier
32'd1 32'd1 // signed arithmetic later
Fl0] assign prod = 10 * 11;
01 01
k/ endmodule
T == F[2:0]
*
module sub32(10,11,diff);
00 01 104 = | input [31:0] 10,411;
1 F[2:1 output [31:0] diff;
| assign diff = 10 - 11;
R[3
module add32(10,11,sum); endmodule

input [31:0] 10,411;
output [31:0] sum;

assign sum = 10 + 11;

endmodule
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¢ Given submodules: [module mux32two(10,11,sel,0ut); Al3l1:01 B(3|1:01

Top-level module — putting them together

module mux32three(i10,11,12,sel,0ut); alu

module add32(10,11,sum);
module sub32(10,11,d1ff);
module mullé6(10,11,prod);

- F[2:0]

module alu(a, b, £, r);
input [31:0] a, b;
input [2:0] f£;
output [31:0] r;

wire [31:0] addmux_out, submux out;
wire [31:0] add_out, sub_out, mul_out;

R[31:0]

——— [ intermediate output nodes o|

mux32two  adder mux(b, 32'dl, £([0], addmux out);
mux32two  sub mux(b, 32'dl, £[0], submux out);

add32 our_adder (a, addmux out, add out);
sub32 our_subtracter (a, submux out, sub_out);
mullé our multiplier(a[15:0], b[15:0], mul out);

mux32three output_mux(add out, sub _out, mul out, £[2:1], r);

\

endmodule

module unique) correspondin
names nstance wlresrreongs Ing

names module alu
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Each hardware block is defined as a Verilog module. So we have the following
modules:

mux32two — a 32-bit multiplexer that has TWO inputs

mux32three — a 32-bit multiplexer that has THREE inputs

mull6 — a 16-by-16 binary multiplier that produces a 32-bit product
add32 — a 32-bit binary adder

sub32 — a 32-bit binary subtractor

15

Now let us put all these together.

Note that mxu32two is being used twice and therefore this is instantiated two
times with two different instance names: adder_mux and sub_mux.

Connections between modules are implicit through the use of signal names. For
example, the 16-bit inputs to the multiplier are taken from the lower 16-bits of a
and b inputs (i.e. a[15:0] and b[15:0]).

16




Testbench — Better than waveform editor

+ Testbench is a module NOT for hardware synthesis, but for testing and debugging only
+ Verilog has behavioural statements to help implementing testbench
¢ Here is an example of a 4-bit full adder defined from low-level up:

Full Adder (4-bit)

Full Adder (1 'b|t) module full_adder_4bit (a, b, cin, sum,
module full_adder (a, b, cin, cout);
sum, cout); input[3:0] a, b;
input a, b, cin; input cin;
output sum, cout; output [3:0] sum;
reg  sum, cout; output cout;
wire c1,¢c2,¢c3;
always @(a or b or cin)
begin Il instantiate 1-bit adders
sum=a’b Acin; full_adder FA0(a[0],b[0], cin, sum[0], c1);
cout=(a&b)|(a&cin)| (b &cin); full_adder FA1(a[1],b[1], ¢1, sum[1], c2);
end full_adder FA2(a[2],b[2], 2, sum[2], c3);
Endmodule full_adder FA3(a[3],b[3], c3, sum[3], cout);
endmodule
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Testbench to test the 4-bit full adder

+ |Initial block together with #<time> define input vectors at initial
different times to test circuit: begin
module test_adder; a = 4'50000;
reg [3:0] a, b; s

reg cin;
wire [3:0] sum;
wire cout;

Tcout=0

full_add Zbit dut(a, b, cin, #50:
sum, cout); a=4'b1111;
b =4'b0001;

b Q000 010 0001 1111 10007 i "a =4'b0000;

b=4'b1111;

sum (T 0000 | 1000 | 1
#50;
a=4'b0110;
b =4'b0001;

I/ sum = 1000, cout =0
end // initial begin
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Instead of specifying the adder through the ‘+" operator, here is an example of a 4-
bit adder specified as low level logic operations.

17

To test this module, we can use the behavioural feature of Verilog and specify a test
module known as testbench.

The first statement instantiates the full_adder_4bit module.

The initial block and the #<time> keywords specify how the module would be
exercised or tested.

The idea is that once you have created this testbench, you could change the design
of the full_adder_4bit modules and have it tested in exactly the same way without
touching the testbench again.

18




Quiz

What is the three types of logical
operators?

What is the difference between ~a
and 'a?

What is the common consequence of
incompletely specify a combinational
logic circuit?

How do you describe a simple D-
flipflop in Verilog?

How would you describe a D-flipflop
with asynchronous clear input?

What is wrong with this:

always @ (clear or posedge clk)

7.

What is the difference between
blocking and nonblocking
assignments?

If a=4’h5, b =4'h3, c =4'h9, what are
the results after the following code

segment is executed?
a=Db; b= c¢c; c=a;

Same as above, but for the following
code segment:

a<=b; b<= c¢; ¢c <= a;

Answers are all in the notes.
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